An Optimal Finite Element Mesh for Linear Elastic
نویسنده
چکیده
This paper investigates the adaptive solution of linear elastic structural analysis problems through re-positioning of the nite element nodal points (r-renement) using an approach known as the Moving Finite Element method. After a brief introduction to the Moving Finite Element method it is proved that this technique can yield optimal nite element solutions on optimal meshes in the energy norm associated with this problem. Following this there is a discussion of the practical applications of this result in the development of adaptive software, where it is proposed that a combination of r-renement followed by local h-renement is likely to be most benecial. A small number of illustrative examples are included.
منابع مشابه
A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملPropagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor
Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملMesh Sensitivity and FEA for Multi-Layered Electronic Packaging
Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994